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ABSTRACT 
 

Africa is far from exploiting its true agricultural potential. United Nations Food and 
Agriculture Organization (FAO) indicates that the continent has 60% of non-cultivated lands 
worldwide. While it is well established that soil fertility is one of the major limiting factors, 
only limited information is available on soil nutrient contents and nutrient availability in the 
African soils. Soil fertility of agricultural fields is related to many physical and chemical 
properties, such as the clay, sand, and organic matter (OM) contents; cation exchange capacity 
(CEC); pH; and available nutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K). 
In agriculture, characterising soil fertility is a key prerequisite to improve farms profitability 
through best qualitative and quantitative crops harvesting. In this context, several studies have 
evaluated the diagnosis of fertility attributes utilizing sampling grids with different spacings. 
Due to many challenges associated with the spatiotemporal characterization of soil attributes 
and the high cost of sampling grids methods, remote sensing technologies have been introduced 
as an efficient alternative tool for the monitoring of agricultural soils. This alternative 
technology can minimize the effort and time related to sample collection and the cost of 
laboratory analysis. In addition, these technologies are widely accepted as a cost-effective and 
non-destructive sensing tool for characterising soil attributes (i.e., N, P, K, OM). Another 
important feature of these remote sensing technologies is the possibility of registering spectral 
data on images using remote sensing platforms such as Unmanned Aerial Vehicle (UAV) 
equipped with multi-sensors (i.e., multispectral, hyperspectral, thermal). In this study, soil 
fertility ground measurements and UAV imagery will be collected over representative regions 
across Morocco where different varieties of crops are planted. The UAV spectral data collected 
using hyperspectral sensors, and soil fertility parameters derived from laboratory analysis will 
be used to calibrate machine learning models. We anticipate that we can achieve much more 
accurate relationships among observed reflectance and soil fertility parameters, thanks to the 
large range of reflectance of the hyperspectral images (Visible to Short Wave Infrared) and the 
capacity of machine learning techniques to model non-linear correlations. Soil fertility is a key 
piece of information in agricultural lands asset management. Adding to that the capacity of the 
mapping solution to be developed to map soil fertility properties from local to regional scales, 
a broad range of stakeholders, with varying and often unexpected levels of potential interest in 
the results of the current project. Thus, this is expected to create a novel agricultural service for 
the African farming community contributing to unlock the potential of African agricultural 
lands.  
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INTRODUCTION 

 
Information about soil nutrient contents is key for explaining measured crop responses 

to soil fertility management practices and for updating and upscaling of soil fertility 
management recommendations, especially in a continent like Africa, where according to 
Lebtahi (2017), 60% of the world’s potential for land cultivation. Yet, most of this land is in 
poor condition and unable to satisfy the needs of agricultural production.  As the population 
increases so too will the demand for soil nutrient rich land to meet the needs of food production. 
This growing need for land restoration is also paralleled by a need for agricultural and 
ecological data in Africa. 

For the management of soil fertility of agricultural fields, physical and chemical 
properties, such as the clay, sand, and organic matter (OM) content; cation exchange capacity 
(CEC); pH; and available nutrients, should be known at proper spatial resolution. The 
spatiotemporal variability of these attributes is dynamic, occurring with different amplitudes 
of variation and spatial patterns. These variations occur according to the classical factors of 
soil formation (McBratney et al., 2003) and owing to minor alterations caused by a combination 
of local factors such as relief and management (Viscarra Rossel & Lobsey, 2016). 

Digital Soil Mapping helps meet these needs with a gridded Soil Information System 
(SIS). Besides, by integrating remote sensing data, the SIS can be updated so frequently. 

 
LITERATURE SURVEY 

 
Several local studies have characterized the spatial dependence of physical and 

chemical attributes via geostatistical analysis (Nanni et al., 2011; Montanari et al., 2012). 
Results show that sample grids greater than 100 × 100 m (1 sample/ha) are not efficient for 
characterizing the variability of most soil fertility attributes (Wetterlind et al., 2010). 

Generally, factors related to the soil class and its formation (e.g., texture) require a 
lower sampling density. However, for pH and available P, K, Ca, Mg, and other chemical 
attributes, a higher sample density is required to characterize the variability (Wetterlind et al., 
2010). Schirrmann and Domsch (2011) did not achieve good spatial models for the available 
K. According to the authors, the microscale variation of available K, with a spatial dependence 
range less than 25 m, limited the characterization of this nutrient. 

Owing to the challenges associated with the spatiotemporal characterization of soil 
attributes, sensing technologies have been introduced as an efficient tool for the monitoring of 
agricultural soils. This alternative would minimize the effort related to sample collection and 
cost of traditional laboratory analyses.  

Soil sensors can be classified based on their design concept as follows: (i) 
optical/radiometric, (ii) electrical/electromagnetic, (iii) electrochemical, and (iv) mechanical 
(Adamchuk et al., 2004; Kuang et al., 2012). These allow the measurement of the soil capacity 
to (i) absorb, reflect, and/or emit electromagnetic energy; (ii) accumulate or conduct electrical 
charge; (iii) release ions; and (iv) resist mechanical distortions (Viscarra Rossel & Lobsey, 
2016), respectively. 

Diffuse Reflectance Spectroscopy (DRS) is widely accepted tool for characterising soil 
features because of low operating cost, non-destructive with little or no sample preparation 
(Stenberg et al., 2010). Another important feature of DRS is the possibility of registering 
spectral data on points or images using different platforms, e.g., using sensors directly on the 
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field, using benchtop sensors in the laboratory with sampled material, or using Remote Sensing 
Platforms with multi or hyperspectral cameras. DRS involves remote, proximal (in-field), or 
laboratory measurements and is a promising technique for digital soil mapping (McBratney et 
al., 2003) and Precision Agriculture (Adamchuk et al., 2004). 

DRS has been used in Soil Science since the beginning of 1950. However, only in the 
last three decades has it gained importance with the development of more practical applications 
(Viscarra Rossel et al., 2011). 

Several scientific studies have successfully estimated soil physical and chemical 
properties using DRS in the spectral regions of the visible (vis; 400–700 nm) and Near-
Shortwave Infrared (NSIR; 700–2500 nm) (Viscarra Rossel et al., 2006). Moreover, DRS has 
been successfully applied directly in the field using sensors embedded in mobile platforms 
(Mouazen et al., 2007; Christy, 2008). 

Worldwide, many attempts have been made to predict the physical and chemical 
attributes of soil using vis-NSIR spectra. In general, calibrations of organic and total C, total 
N, and clay content are more likely to succeed because clay minerals and OM are the spectrally 
active soil constituents, with well-known spectral features in the vis-NSIR region (Ben-Dor, 
2002).  

Other soil attributes (e.g., CEC, pH, and V %) do not present absorption features in this 
spectral region and, hence, their correlations with vis-NSIR spectra are generally weak 
(Stenberg et al., 2010). However, there may be exceptions, as observed by Demattê et al. (2017) 
for available Mg and K in Brazilian tropical soils and by Mouazen and Kuang (2016) for 
available P in soils of temperate regions.  

These occasionally successful calibrations can be attributed to the covariance of soil 
attributes with some spectrally active constituents (Kuang et al., 2012). This behavior has 
generally been observed at the local level. In agricultural soils, this explanation is reasonable 
because nutrients are depleted with plant production, which is related to productivity. 
Depending on the degree to which the productivity is regulated by the clay and soil OM, the 
available nutrients will be associated with these variables and, consequently, with the vis-NSIR 
spectrum (Stenberg et al., 2010; Iticha & Takele, 2019). 

Regarding the African context, The Africa Soil Information Services project has 
developed a gridded Soil Information System of Africa at 250 m resolution (pixel = 6.25 ha) 
showing the spatial distribution of primary soil properties of relatively stable nature, such as 
depth to bedrock, soil particle size fractions (texture), pH, contents of coarse fragments, organic 
carbon and exchangeable cations such as Ca, Mg, Na, K and Al and the associated cation 
exchange capacity (Hengl et al., 2017). 

These maps were derived from a compilation of soil profile data collected from current 
and previous soil surveys. As a spatial prediction framework, they used an ensemble of random 
forest and gradient boosting machine-learning techniques. Furthermore, as inputs to train the 
model, they used the most complete compilation of soil samples obtainable and a diversity of 
soil covariates (primarily based on remote sensing data) (Hengl et al., 2017). 
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DISCUSSION OF RESULTS FROM LITERATURE 
 

From the previous literature survey, the following points are worth highlighting: 
• According to this literature survey, the only study that was done in the African context 

(Hengl et al., 2017) was limited to some sub-Saharan African countries. Thus, it does 
not include countries like Morocco. Furthermore, the use of Remote Sensing data was 
limited to derive some covariates like Digital Elevation Model (DEM) and time-series 
vegetation indices. Thus, the use of high-resolution hyperspectral images is not yet 
explored. 

• The soil fertility management requires high sampling density as reported by (Wetterlind 
et al., 2010). Thus, the use of geostatistical methods is not practical especially in 
African countries where farmers that choose to do chemical analysis of their farmland’s 
soil generally limited the number of soil samples to 1 sample per farmland 
(independently of the farmland area and soil characteristics variability). This results in 
a broader grid density than what is recommended. Having said that, the development 
of remote sensing-based mapping techniques is of major importance to overcome the 
cost and the effort related to soil sampling. 

• As stated by Stenberg et al., 2010; Kuang et al., 2012; Iticha & Takele, 2019, successful 
calibrations using vis-NSIR spectrum can be attributed to the covariance of soil 
attributes with some spectrally active constituents (eg. clay and soil OM), which 
depends on the degree to which the productivity is regulated by the clay and soil OM. 
This common observation between those studies stressed the local character of 
calibrating successful spectral-based models. 

 
The use of high resolution hyperspectral (vis-NSIR) imaging in African countries, is 

expected is to help developing new mapping techniques for soil fertility parameters estimation 
and, thus, better agricultural soils management. High resolution (equivalent to a very high-
density soil sampling grid) and high accuracy soil fertility prediction data-driven based-models 
is expected to be achieved. Hence, the interest in carrying out this study. 
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